// 使用CAS实现多线程无锁访问共享变量,达到线程同步
# include <iostream>
# include <thread>
# include <mutex>
# include <atomic>
using namespace std;
std::atomic<int> var(0);
void add() {
int expect = var;
while (!atomic_compare_exchange_weak(&var, &expect, var + 1));
}
int main(int argc, char *argv[]) {
int count = 2000;
std::thread threads[count];
for (int i = 0; i < count; ++i) threads[i] = std::thread(add);
for (int i = 0; i < count; ++i) threads[i].join();
cout << var << endl; // var 为 2000,无误!!
return 0;
}
// 使用原子数据类型的原子方法操作,达到同步线程
# include <iostream>
# include <thread>
# include <mutex>
# include <atomic>
using namespace std;
std::atomic<int> var(0);
void add() {
var.fetch_add(1);
// cout << std::boolalpha ;
// cout << "is_lock_free:" << var.is_lock_free() << endl; // true
}
int main(int argc, char *argv[]) {
int count = 2000;
std::thread threads[count]; // default-constructed threads
for (int i = 0; i < count; ++i) threads[i] = std::thread(add);
for (int i = 0; i < count; ++i) threads[i].join();
cout << var << endl;
return 0;
}
// 使用RAII的mutex,同步线程
# include <iostream>
# include <thread>
# include <mutex>
# include <atomic>
using namespace std;
std::mutex mtx;
void add(int *var) {
std::lock_guard<std::mutex> l(mtx);
(*var)++;
}
int main(int argc, char *argv[]) {
int count = 2000;
std::thread threads[count]; // default-constructed threads
int *var = new int [1];
for (int i = 0; i < count; ++i) threads[i] = std::thread(add, var);
for (int i = 0; i < count; ++i) threads[i].join();
cout << *var << endl;
return 0;
}
备份地址: 【c++11使用atomic多线程同步3种方法】